The value of thoracoscopic surgery for congenital pulmonary malformations

Th. Petnehazy, H. Till
Department of Paediatric and Adolescent surgery
Medical University of Graz
Classification

“A rare developmental abnormality of the lung, characterized by cystic masses of disordered pulmonary parenchyma”.

- BPS = Bronchopulmonary sequestration
- CPAM = Congenital pulmonary adenomatoid malformation
 (CCAM = Congenital cystic adenomatoid malformation)
- CLE = Congenital lobar emphysema
- Hybrids, bronchogenic cysts

Histology - CPAM

| 1977 Stocker - Klassifikation (CCAM) |
| 1995 Adzick - Klassifikation (pränataler Ultraschall) |
| 1997 Histopathologische Klassifikation nach Cha |
| 2006 Klassifikation nach Kreiger (3 histopathol.Subtypen) |

Macrocystic (>5mm) versus microcystic (<5mm) versus solid

Postnatal management

- Clinical status
- Associated anomalies
- Diagnostic imaging (also fetal)
 - US
 - CT
 - MRI
- Confirmation of diagnosis
- Recommendation to the parents….
Chronic inflammation in CCAM: an underestimated risk factor.

- Early (postnatal) or late resection (3 months) ??
- 18 in perinatal group (PG), required operation for respiratory distress
- 6 in the late group (LG) with elective surgery
- PG: 100% of type II (n=8) and 50% of type I were inflamed
- LG: 50% were chronically inflamed

Conclusion: Overall incidence of pulmonary inflammation 79%. Thus early postnatal treatment should be considered even in asymptomatic patients
Is CPAM a premalignant lesion for pleuropulmonary blastoma?

- Retrospektive Studie (Toronto) 1999-2008
- 129 Kinder mit CPAM, wovon 74 reseziert wurden
- 5 Kinder hatten ein PPB
- 3 Kinder wurden präoperativ als CPAM diagnostiziert

Anhand ihrer eigenen Daten berechneten die Autoren das Risiko eines PPB bei 2% aller diagnostizierten CPAM und bei 4% aller resezierten Formen

1. LaBerge JM et al. Asymptomatic CPAM. Semin Pediatr Surg 2005;14:16-33
Principles of thoracoscopy

- Positioning allows either anterior or posterior access
- Ergonomic placement of 3-5-ports (3-12mm, soft or rigid)
- Scope (3-5mm, 30°)
- Insufflation Pressure 6-8 mmHg
- Vessel sealing: Clip, Ligasure, suture
- Bronchus ligation: Clip, endostapler, Endoloop
- Specimen bag

Boubnova J. Surg Endosc 2011;25:593-596
Kaneko K. Ped Surg Int 2010;26:361-365
Surgical strategy

- You must be (very) familiar with the anatomy of the lung

- Laparoscopic resection usually works by the „open book principle“

- You tackle:
 - pulmonary arteries first,
 - bronchus
 - pulmonary veins last
Extralobar sequestration (BPS)

<table>
<thead>
<tr>
<th></th>
<th>Extralobar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy</td>
<td>Covered by own pleura, separated from lung parenchyma</td>
</tr>
<tr>
<td>Frequency</td>
<td>25%</td>
</tr>
<tr>
<td>Localisation</td>
<td>Paravertebral (supra- and infradiaphragmatic), most left sided</td>
</tr>
<tr>
<td>Blood supply</td>
<td>Variable</td>
</tr>
<tr>
<td>Blood drainage</td>
<td>V. cava, V. azygos, V. portae</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Mostly asymptomatic</td>
</tr>
<tr>
<td>Therapy</td>
<td>Resection</td>
</tr>
<tr>
<td>Male / Female</td>
<td>4:1</td>
</tr>
</tbody>
</table>
Thoracoscopic resection BPS

- Lateral decubitus position
- 3(4) ports (3-5mm)
- Ligation with clips, LigaSure
- Careful: Retraction of the vessels after dissection
- Extraction of tissue in specimen bag of fragments (morcellation)
Thoracoscopy
Resection & results
Bronchogeneic cyst
...but what about the more complex lesions...
Intralobar BPS

<table>
<thead>
<tr>
<th></th>
<th>Intralobar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy</td>
<td>Covered by visceral pleura</td>
</tr>
<tr>
<td>Frequency</td>
<td>75%</td>
</tr>
<tr>
<td>Localisation</td>
<td>Posterobasal segment, most left sided</td>
</tr>
<tr>
<td>Blood supply</td>
<td>Large arteriel supply branching from the aorta and ist large branches</td>
</tr>
<tr>
<td>Blood drainage</td>
<td>Pulmonal venes</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Mostly asymptomatic, Infections, bleeding</td>
</tr>
<tr>
<td>Therapy</td>
<td>Lobectomy</td>
</tr>
<tr>
<td>Male / Female</td>
<td>1:1</td>
</tr>
</tbody>
</table>
CPAM

- Incidence: 1.2 / 10,000 newborn
- Classification*:
 - microcystic (< 5mm)
 - macrocystic (> 5mm)
- Often hybrid lesions (CPAM)
- Anatomical lobectomy mandatory
- Timing: - asymptomatic at 3-6 months
 - symptomatic at any age

CPAM-lobectomy

- Lateral position
- Single lung ventilation preferred
- 3(4) ports 3-5mm
- Energy sources on board:
 - Electrocautery hook (fissure)
 - Ligasure
 - Clips
 - Endo-GIA (> 6 months of age, without a trocar)
CPAM lower lobe

- Decompression of the CPAM?
- Mobilization of inf. pulmonary lig
- Dissection of incomplete fissure
 - Monocautery hook
- Ligation of pulmonary arteries
 - Ligasure
 - Clips
 - Suture ligations
- Dissection of bronchus
 - Clips (PDS) or GIA or suture
- Ligation of pulmonary veins
- Extraction of tissue
 - Specimen bag
 - Morcellation
Results

- **Experience with 144 consecutive pediatric thoracoscopic lobectomies**
 - Albanese CT, Rothenberg SS. J Laparoendosc Avd Tech 2007

- 144 thoracoscopic lobectomies (1995 to 2005)
- CCAM/sequestrations(112), bronchiektases(19), CLE(10), malignancy(3)
- Age 2 days to 18 years
- Single lung ventilation in all cases
- All but 3 successful (1 bleeding, 1 bronchus of UL, 1 inadequate margin)
- 110 LL, 24 UL, 10 ML
- Operating time 35 to 220 min.
- No reoperations, median LOHS 2.8 days

- Conclusion: The current techniques and equipment allow for the complete thoracoscopic resection of pulmonary lobes in any age or size of the child
Thoracoscopy improves midterm musculo-skeletal status and cosmesis

Lawal TA, Ure BM Ann Thorac Surg 2009

- Video-assisted thoracoscopic (VATS) versus conventional thoracic surgery (CTS)
- 62 children, FU of 1-7 years (mean 3.8 years)
- Underwent clinical assessment of skeletal function, intercostal spaces were investigated for rib fusion by US
- Chest asymmetry was significantly less after VATS, p<0.001
- Incidence of scoliosis was lower after VATS (9% vs 54%, p<0.001)
- Intercostal spaces were narrower after CTS (p<0.001)

- Conclusion: VATS is associated with significant less midterm muscoloskeletal sequelae and better cosmesis
Thoracoscopic lobectomies in infants less than 10kg with prenatally diagnosed cystic lung lesions

- 75 patients under 1 year or 10kg (2001 to 2009)
- 52 CCAM, 20 BPS 3 CLE
- Age at operation 4 days to 11 months (3.1 – 10kg)
- 75 thoracoscopic lobectomies
- Operation time 45-225 minutes

- Conclusion: Thoracoscopic lobectomy is safe in infants < 10kg and avoids the morbidity associated with thoracotomy
Prior thoracic surgery has limited impact on the feasibility of consecutive thoracoscopy.

- 228 thoracic procedures in 190 children (mean age 5.1 years)
- 137 thoracoscoopies, 91 conventional operations
- 32 (14%) had previous ipsilateral thoracic surgery
- 20 underwent subsequent thoracoscopy
- No significant impact on conversion rate
- However higher number of reconstructive surgery in patients without prior surgery

Conclusion: Thoracoscopic surgery is feasible even after prior thoracic operations
Thoracoscopy improves midterm musculoskeletal status and cosmesis

Lawal TA, Ure BM Ann Thorac Surg 2009

• Video-assisted thoracoscopic (VATS) versus conventional thoracic surgery (CTS)
 • 62 children, FU of 1-7 years (mean 3.8 years)
 • Underwent clinical assessment of skeletal function, intercostal spaces were investigated for rib fusion by US
• Chest asymmetry was significantly less after VATS, p<0.001
• Incidence of scoliosis was lower after VATS (9% vs 54%, p<0.001)
• Intercostal spaces were narrower after CTS (p<0.001)

Conclusion: VATS is associated with significant less midterm musculoskeletal sequelae and better cosmesis
Increasing acceptance for most indications and most age groups
No prospective multi-center studies available
High variability of pathologies
Highest technical standard even in complex pathologies
Significant learning curve
Decrease in iatrogenic morbidity
Less trauma and late musculo-skeletal deformities
Good functional and cosmetic results
Limits: Individual experience and technology
Future: Development will continue (e.g. Single port laparoscopy)